
Kinetic theory of polymer crystal growth 
applied to melt crystallization of low 
molecular weight poly(ethylene oxide)* 
C. P. Buck ley  
Department of Textile Technology, UMIST, Manchester M60 1QD, UK 
(Received 5 June 1979; revised 24 September 1979) 

The kinetic theory of polymer crystal growth from the melt is extended to polymers with finite 
molecular weight and small numbers of folds per molecule. The theory is applied specifically to 
poly(ethylene oxide), where the most detailed experimental data are available on the growth of 
crystals from low molecular weight fractions. Predicted curves of growth-rate versus temperature show 
extensive qualitative agreement with experiment, including increasing chain-folding with increasing 
molecular weight or supercooling. In the theory this arises from the assumption that molecules have 
no freedom of lengthwise position within a surface nucleus. It may provide a general rationalization 
for chain-folding, but could possibly be a consequence of end-group pairing in the special case of OH- 
terminated poly(ethylene oxide). The theory also explains the sharpness of observed transitions between 
growth-modes with different numbers of folds per molecule, and the changes in shape of crystals near 
the transition. Reasonable quantitative agreement with experiment is found in the two cases of high 
molecular weight and high degrees of supercooling. For low molecular weights and small supercoolings, 
however, there is a large quantitative discrepancy between the predicted and observed separations of 
adjacent branches of each growth-rate/temperature curve. This appears to be inexplicable in terms of 
existing understanding of polymer crystal growth. An Appendix is given which outlines the effects on 
the theory of relaxing various assumptions of the growth model. 

INTRODUCTION 

Perhaps the most remarkable property of long-chain molecules is their tendency to crystallize in folded conformation. This 
behaviour is now well-documented for a wide range of polymers, but its cause remains unclear. It is, however, widely believed 
to be kinetic in origin. A direct means of tackling the problem is to study the crystallization rate of low molecular weight 
(MW) polymers, in the rdgimes of MW and supercooling where the transition from extended-chain to folded-chain crystal 
growth can be observed. If the results of experiments such as this could be interpreted properly, the problem of explaining 
chain-folding would be solved. 

Detailed data of this type have now been obtained for melt-crystallization of low ~ fractions of polyethylene (PE) ~'2 
and poly(ethylene oxide) (PEO) 3-6. The remaining problem is that of interpretation of the data. Current understanding of 
polymer melt crystallization rests on a kinetic theory which assumes MW to be infinite, and which is therefore inapplicable in 
its present form. It is not sufficient merely to substitute the appropriate (M3C-dependent) equilibrium melting-point into the 
existing theory ~. The occurrence of chain-ends changes the sequence of molecular events involved in crystal growth, and 
makes a more drastic revision of the theory necessary. Previous kinetic theories allowing for finite M-W have used the approxi- 
mate 'saddle-point' approach 7,s. A detailed theory was, however, developed by Sanchez and DiMarzio 9 for crystallization 
from dilute solution. Some of their findings are relevant to the present case. 

To construct a theory of the growth process, one must answer rather detailed questions on the structure of low M-W 
polymer crystals. Are chain-ends always rejected or are some incorporated as defects within the crystal? Is there the same 
number of folds per molecule? How long are the cilia protruding from the crystal surface? Of course, these questions do not 
arise if the MW can be assumed infinite. In the case of PE, results so far are ambiguous on these points ~'2. PEO, on the other 
hand, crystallizes in an unusually well-defined manner for a polymer system, and these details are known with sufficient cer- 
tainty to allow progress in modelling the crystallization process. 

Our purpose in the present work has been to exploit the PEO system for testing current understanding of polymer crystal- 
lization from the melt. In particular, can it account for the transition from extended to folded-chain crystal growth with 
increasing supercooling or MW? 

We take as a starting point the model of polymer crystal growth originally proposed by Lauritzen and Hoffman ~°, which 
has found wide application to high MW polymers with high degrees of chain-folding. Later modifications due to Lauritzen and 
Hoffman 1~ and Lauritzen ~2 are included, but are of only minor importance here. Changes are introduced as necessary for 
application to polymers of finite MW, where the number of folds per molecule may be small or even zero. Where detail is 
required the specific case of low MW PEO is invoked. Even then, several points of ambiguity remain; and it has proved neces- 
sary to formulate various versions of the theory, embodying different assumptions. The version given in detail below is the 

* A shortened version of this paper was presented at the Biennial Conference of the Institute of Physics Polymer Physics Group, held at 
Shrivenham, UK, September 1977 
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Figure  I Crystal growth-rate G versus temperature T fo r  four  low 
M W  f ract ions o f  PEO: A, M n = 1890; B, M n = 3900; C, M n = 5970; 
D, M n = 7760 and one high M W  sample: E, M~I = 152 000 af ter  
Kovacs and coworkers 3-s .  Parameter shown is n, the number of  
folds per molecule 

most straightforward extension of the existing theory. More complex modifications are outlined in the Appendix. They 
were found to offer no practical advantage in fitting experimental data. 

Crystal growth-rates predicted by the theory have been computed using thermodynamic parameters for PEO. They are com 
pared with published growth-rate data for this system. 

THEORY 

The case o f l o w  MW PEO 

Bulk samples of low MW fractions of hydroxyterminated PEO, crystallized from the melt, have been shown to have crystal 
thicknesses L corresponding to integral fractions of the molecular length 3  ̀(i.e. L "=- 3`/(n + 1) where n is an integer) 13-1s. This 
indicates that each molecule is folded exactly a small number of times, n, with chain-ends residing in the crystal surface and 
chain-folds being rather 'tight' with adjacent re-entry. Thermodynamic measurements, which allowed estimates to be made of 
the lengths at" chain-folds and cilia 16, confirmed this. The crystals thicken in a stepwise manner to n - 1 folds per molecule 
with increasing crystallization time or temperature, and during subsequent annealing 3,~7. The rate of unfolding is a strong 
function of L, decreasing with increasing L 16, consistent with it being limited by the rate of dragging a hydroxyl end-group 
through the crystal. All of this behaviour shows that it is much less energetically favourable for PEO chain-ends to lie inside, 
rather than outside, the crystal. On these grounds we shall assume that incorporation of chain-ends within the crystal during 
growth can be neglected. 

Graphs of measured crystal growth-rate G versus temperature T for melt-grown single crystals or spherulites show distinct 
branches a, corresponding to each integral value of n (see Figure 1). Each branch has the qualitative shape of the G(T) curve 
for a typical high MW polymer, including giving approximately the characteristic linear relation between log G and 1~TAT, 
where AT is the appropriate (MIf-dependent) supercooling 3. Yet, in the high MW case, this shape, according to the theory of 
Lauritzen and Hoffman l°, results from the continuous variation of L (or strictly of surface nucleus thickness) with T, contra- 
dicting the apparent situation in low MW PEO. 

We resolve the paradox as follows. We assume that crystal growth in this system does occur by coherent surface nucleation 
involving nuclei with, say, n folds per molecule and a thickness l which varies with T, as in the highMW case. But we further 
assume that a nucleus rapidly thickens after formation, as mffch as possible without any unfolding and hence without dragging 
chain-ends into the crystal. If the lengthwise positioning of molecules in the nucleus is correct (as might be the case if some 
hydrogen-bond hydroxyl-group pairing exists between molecules in the crystal and those nearby in the melt) this could be 
accomplished with little or no longitudinal diffusion. The final thickness will therefore be approximately 3`/(n + 1) and will 
correspond to the thickness L measured on mature crystals. This thickening can be shown to occur in a time less than that 
required for nucleation. A new nucleus therefore always 'sees' a substrate of thickness L. 

Further assumptions employed here are that all molecules have the same length 3. and are deposited with the same number 
of folds, n, within a given branch of the G{T) curve. 

Model o f  growth process 

The polymer crystal is taken to be lamellar in shape, with molecular axes normal to its large surfaces. In common with 
most previous treatments of polymer crystal growth, we assume the crystal to grow by coherent secondary nucleation of a new 
surface patch onto the growth face, followed by one-dimensional lateral growth of the patch along the face to complete a new 
monomolecular layer. A new feature, however, is that a crystal growing with given n and 3̀  is assumed to always present a 
growth face of thickness L ~- 3`/(n + 1), for reasons given above. 
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Figure 2 First few stages in the format ion of a surface nucleus on a 
crystal growth-face 

The growth process is illustrated in Figure 2 as a sequence of many stages, the vth stage corresponding to the patch contain- 
ing some whole number v of molecular stems arranged side-by-side. Each stem is represented by a box of depth b, width a 
and height l. We assume that I does not fluctuate within a growth layer, but it may between layers. The crystal substrate is 
shown to have a finite width D c, following Lauritzen 12. This corresponds to the distance between crystal defects over which 
crystallographic regularity is maintained. We assume D c >> a. 

The above is clearly a coarse model of the process. In reality, the deposition of each stem presumably consists of the 
sequential deposition of individual main-chain atoms. We prefer the coarse approach here to make the analysis less cumber- 
some. Its justification has been considered by previous authors 9'is*. 

The growth process can therefore be considered as a 'sequential process', discussed in this context by Frank and Tosi TM. 
Moreover, with the assumptions introduced above, we can concentrate on the case where there is only one possible sequence 
of stages, which is the case treated by Frank and Tosi. DiMarzio 19 has given a more general formulation which would be neces- 
sary, for example, if fluctuations of;L n or l were to be included. 

We thus consider an ensemble in which % is the occupation number of  the vth stage and c%,/30 are the forward and back- 
ward transition rates from this stage. Assuming steady-state conditions, with no 'piling-up' in any of the stages, the net forward 
flux j was shown to be given by Is : 

ao~o 
] = (1) 

m 

m=v+ l i=v+l 

where 3'/= ~i/cti • 
Lauritzen 12 has pointed out that growth of a polymer crystal can be of one of two types. He labels Rdgime I the situation 

where growth is limited by the rate of secondary nucleation. A surface patch once nucleated spreads to cover the substrate in 
a time much less than the nucleation time, leaving a smooth substrate for the next nucleus. The other possibility is Rdgime 2, 
where the time taken to complete a new growth layer is greater than the nucleation time. This results in multiple nucleation, 
leaving the crystal with a rough edge. We consider each possibility in turn. 

Rdgime 1 

In the above notation, new nuclei of thickness l form at a rate ](/) for r/O available sites. On the substrate in Figure 2 we 
can assume that there are Dc/a such sites and hence the total nucleation rate J per growth face is given by: 

O c 
] = - -  ~ [ i ( 0 / , 7 o ]  

a 
(2) 

where the summation is over all possible values of l (see below) and ]/770 is given from equation (1) as: 

* The author has found by detailed calculation that the present theory leads to essentially the same results when formulated using the fine- 
grained approach, considering the attachment of successive main-chain atoms 
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Figure 3 Schematic diagram of molecular events assumed in the 
format ion of a surface nucleus 

/ aO 
- -  = (3)   fi] l + Ti 

m=l i=1 

To evaluate fir/0, it is necessary to define the sequence more precisely. We shall assume here that the sequence of  adding 
new stems follows the pattern shown in Figure 3. The molecules are laid down sequentially, each one being folded n times 
before deposition of  the next. If  all molecules lie down in an identical manner the surface patch must be periodic in u, with: 

To = To+n+1 (v > O) (4) 

In this case equation (3) may be expressed in closed form: 

n+l  011 
j i=l 

- -  = (5) 

1+ l'I i 
m=l i=1 

Here we shall make the further simplification that there are only three distinct %:  

1 
aO; oq = o~ 2 = . . .  o~ n = oG an+l = ot (6) 

and one distinct/3o: 

/31 =/32 = . . . / 3 n + l  =/3 (7) 

(riO has no meaning). Equation (5) then becomes: 

j o~ o [ 1 - T n T  '] 

rio ?t 

(8) 

where 3" = t31a, 7' = 131o:. 
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To evaluate the transition rates it is necessary to construct their corresponding free enthalpy barriers. Let Aq~v,u+ 1 be the 
barrier for transition from stage o to stage u + 1. Referring to Figure 3, it is clear that the only distinct A~ arising may be 
assumed to be (leaving aside the additional barrier height for molecular diffusion): 

A~0,1 = 2blo + 2aba'eo - ~kablAf 

A~bl, 0 = (1 -- ~2)abtAf 

A¢1,2 = 2aboef - t~ablAf 

A~bn+ 1;n+2 "= 2abo'eO - ~ablAf 

(9) 

In equations (9), o is the lateral surface free energy of the crystal and At" the bulk free enthalpy of fusion per unit volume of 
crystal. The parameter ~ apportions the bulk free enthalpy change between forward and backward steps and can take values 
between 0 and 1. It was introduced by Lauritzen and Hoffman n to surmount a difficulty which arises at high supercoolings 
if it is allowed only to be unity. The surface free energies Oe[ and aeO refer to chain-folds and chain-ends respectively. In 
equations (9), however, we have used 20~0 to denote the combination: 

kT 
2ae0 = 2aeO + -~ lnCp (10) 

where k is Boltzmann's constant, C is a constant characteristic of the flexibility of the molecule and p the degree of poly- 
merization. The second term of equation (10), while not a surface energy, occurs in conjunction with ae0. It corresponds to 
the entropic free enthalpy gained when a molecule is brought from the melt to a specific point in space, as introduced by 
Flory and Vdj 2° for analysing the melting of n-paraff'ms (see also the 'entropy of localization' of Sanchez and DiMarziog). It 
was found necessary in the analysis of melting of low MW PEO by Buckley and Kovacs 2 ~. Its inclusion here presupposes that 
each molecule has no choice of lengthwise position within the nucleus, consistent with assuming that crystal thickening from 
l to L can be achieved without longitudinal diffusion. 

The transition rates can now be constructed as follows: 

a 0 =/z exp 

ot =/a exp 

2bla 
kT 

2ab a ef 

2aba'eo__ + ~ablAf ] 
kT kT J 

_ _  + t~ablAf ] 
j 

2abaeo ~ablAf] 
t~' =/a exp - -  + 

k r  

[ abtAf] 
3=/zexp - (1 - if) - - - ~ ]  

where/~ is the transport term, which for the small supercoolings of interest here can be assumed to have the form 
(kT/h) exp (-E/kT), where h is Planck's constant and E an effective activation energy for molecular transport in the melt 
(assumed independent of MW). Substituting from equations (11) into equation (8) then yields: 

] {  [2ab(n°ef+Oeo)(n+l)ablAf]l { ~,l [2mabaef mablAf]} -1 
- - = #  1 - e x p  exp ~ -  ~-~ .] 70 [ ~ kT j j x  1 + = 

(11) 

2bla 2aboeo q/ablAf] 
_ _  d 1 -  _ _  

x exp kT kT kT 
(12) 

Equation (12) gives the nucleation rate for a particular nucleus thickness L The form of the function is sketched in 
Figure 4. The lower limit on nucleus thickness, lmin, at or below which nuclei do not form is given from equation (12) by: 

lmin _ 2(nOel + aeO) (13) 
(n + 1)Af 

The upper limit for given X and n is clearly L = (X-2le0 - nlfo)/(n + 1), where leo and lfo are the lengths of cilia and chain- 
folds in mature crystals. Otherwise, chain-ends or chain-folds would have to enter the crystal. This is a major departure from 
the infinite MW approximation, which allows l instead to extend to infinity. The cut-off at l = L is the means by which J is 
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Imm t 

Sketch of the function j (/}It/o given by equation (12) 

brought to zero at the melting-point Tm(~, n), since at this temperature L = lmi n. The relevant nucleation rates thus occur 
only within the shaded part of Figure 4. 

The crystal growth face advances a distance b in a time j -1 .  The growth-rate in this regime, G1, is therefore given from 
equation (2) by: 

bDc 
c~ - ~[i(O&o] 

a 
(14) 

where J/~?O is given by equation (12) and the summation is understood to extend from l = lmin to l = L, in steps of lu, the c- 
axis projection of one main-chain bond. 

REgime 2 
Let I represent the total nucleation rate per unit length of substrate i.e. I = J/Dc; and g the velocity with which a surface 

patch spreads laterally along the growth face. In r~gime 2, where g is small and multiple nucleation occurs, the appropriate 
growth-rate becomes 22: 

G2 = b(lg) 1/2 (15) 

Since, in the present model, a range of values of l are represented on each growth-face, it is necessary to use in equation (15) the 
mean value of g: 

(16) 

giving: 

G 2 = b(I(g)) 1/2 = b ~03 

where summations are again from l = lmi n to l = L. 
The velocity g will not in general be constant as the patch grows. Its average value for the addition of the v0th to the 

(v0 + n)th stems is simply the width a(n + 1) of these stems divided by the time taken to add them: 

(17) 

]vo+n 

g=a(n+X)/o~=v ° ( ? )  ( 1 8 )  

Using equation (1) tO provide (%if), and invoking as before the periodicity of Tv (see equation (4)), we may express the sum- 
mation in equation (18) in closed form: 

VO+ll 

O=VO 

v=vo m=v+l i=v+l 

vo+n+l 

i=vo+l 

(19) 
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Given the periodicity of a o and 3'0 this expression is independent of v0 and represents the time taken to add any adjacent 
sequence o f n  + 1 stems (excepting o0 = 0). Under these conditions, therefore, the surface patch does spread with a mean 
velocity g independent of  its size. When the additional simplification of equations (6) and (7) is invoked, equation (19) 
reduces after manipulation to: 

n 

oo+n E 

0=00 

7 m [a '(n - m)/a + m + 1] 

c~'[1 - 7n7'1 
(20) 

for all v0 > 0. Substituting from equations (11) and (20) into (18) we obtain: 

g=#a(n + 1) 1 - exp !. ~ ~ -  ] 

2ab(t~ef - ~eO exp 
x l + m + ( n - m )  exp 1. kT kT - ~  ].! 

2aboeo ~ablAf]  
x exp - -  + 

k r  
(21) 

The growth-rate G2 is then given by equation (17), using equation (21) for g(l) and equation (12) for j(l)/r/0. 
We must now consider which regime to expect in a given experiment, a question discussed in detail by Lauritzen ~2. An 

approximate argument would be as follows. Let rn be the average time between nucleation events on a given growth-face and 
rc the time reqaired for completion of  a new growth-layer. Clearly, in r6gime 1 rn > rc, and in r6gime 2 rn < rc. To a first 
approximation r c  1 ---g/D c and hence, through equation (21), depends on I. Taking therefore the mean r c  1 to be ( r c l )  = 
(g)/Dc, and noting rn  F= J = ID o we may define Dc* as the value ofD c satisfying ( r c  1) = rn -1 , giving: 

D* = {(g)/I} 1/2 (22) 

R~gime 1 prevails when Dc.¢ D* and r6gime 2 when D e >> D*. To within a constant factor of  order unity, equation (22) 
agrees with the more carefully derived result of  Lauritzen ~2. The growth-rate presumably varies smoothly between G1 and G 2 
when D c is of  the same order as D*,  but no exact solution of this difficult case is yet available. It proved useful in the present 
work to use 1 = G1/bD c and (g) =G2/b21to express equation (22) in the form: 

D*  = G2/(G1/De) (23) 

Further comments on theory 
The analysis given above introduced several extra assumptions, not yet discussed, which are difficult to justify a priori. The 

following modifications to the theory were therefore examined, to study the effects of  systematically relaxing these assump- 
tions. Details are given in the Appendix. 

(a) Choice o f  sequence For given X, n and l a single sequence was assumed, corresponding to each molecule being fully n 
times folded before addition of the next (see Figure 5a). Since, however, the surface patch can grow at either end, a different 
sequence could occur, such as in Figure 5b, without violating the assumption that all molecules fold n times. In the example 
shown at o = 3, a new molecule has arrived before completion of deposition of the first. There are clearly many different 
sequences that could be followed, and the resulting nucleation rate can in general only be bounded. The expressions for G 1 
and G 2 derived above turn out to be the upper limits. The lower limits, corresponding to the sequence in Figure 5c, were also 
calculated and were found to be smaller by a factor of  10 to 100 (excepting n = 0, when the two bounds coincide). It  also 
follows that any sequence involving non-adjacent re-entry will lead to growth-rates G 1 and G 2 below those derived from 
Figure 5a. The model therefore predicts that chain-folding, when it occurs, will be by adjacent re-entry. 

(b) Number of  nucleation sites In equation (2) it was assumed that a width a of  the substrate contributes only one poten- 
tial nucleation site. In the present model (Figure 2), however, when L > l the nucleus may have a choice of  lengthwise posi- 
tion, and a width a will then contribute a number of  sites which depends on/. 

(c) Degree of  molecular localization In equation ( I0)  each molecule is assumed to have no freedom in its lengthwise place- 
ment in the surface patch. This is necessary if thickening from l to L is to occur without longitudinal diffusion. If  this dif- 
fusion is allowed to occur, the assumption can be relaxed without making the theory intractible according to one of two 
models (Model i and Model 2 - see the Appendix). 
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Figure 5 Three possible sequences for  the growth of a surface 
nucleus wi th n = 2 

(d) Effect  o f l  on OeO and Oef In equations (9) we implied that Oe0 and Oef are independent of l and hence of  the lengths of 
cilia and chain-folds that are formed during attachment of  molecular stems. Furthermore, we shall employ values for these 
parameters measured on mature crystals (i.e. where cilia are short and chain-folds are tight). Sanchez and DiMarzio, however, 
pointed out that the presence of the crystal as an excluded volume reduces the number of  conformations available to a 
cilium or a chain-fold, and indicated' tke effect this may have on the partition function 9. The effect causes Oe0 and Oef to be 
/-dependent. 

It is interesting to take the present theory to its limit of high MW and high degrees of  folding, for comparison with results 
of  previous authors. This may be done consistently by taking the limit as X ~ ~ and allowing n to be a large but finite integer. 
From this it follows that L -~ o~, 

f ~ &0 
= o~0(1 - 7) (24) 

70 1 +'7 +'),2 + . . .  

and: 

2Oef 
lmi n ~ (25) 

~f 

Expressing Y,(//r/0 ) in integral form we now obtain: 

(')'L (26) 

in agreement with Lauritzen and Hoffman 11.. In evaluating a0 a problem arises, as in the limit of  high MW (k ~ oo) the 
entropy of  localization k In Cp clearly does not apply. This implies a discontinuity between the low MW theory given here 
and the case of  high MW, suggesting a gradual disappearance with increasing MW of the lengthwise molecular localization 
within the nucleus, which the present theory cannot describe in its basic form. Modifications (b) and (c) (Model 2), however, 
do not suffer from this difficulty. Incorporating this feature into s 0 and evaluating the integral in equation (26) we obtain: 

5" ~- exp + exp x - (27) 
~-0 l u k T  ~ ] A f k T  ] 2be - ~ a b A f  2bo + (1 ~)abAf  

* The  a p p r o x i m a t e  na tu re  of  e q u a t i o n  (26)  should  be emphas ized .  I t  arises because  i t  is n o t  poss ible  to take  the l imi t s  ~ ~ ,  n ~ ~ ,  L ~ 
s imu l t aneous ly  
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which agrees with the corresponding expression of Lauritzen and Hoffman 11 when allowance is made for their approximation 
Oe0 "" O. 

Application to PEO 

The theory given above was used to predict the crystal growth-rates, as functions of X, n and T, for lowMW PEO. 
Fortunately, detailed thermodynamic data are available for this polymer. We employ here the calorimetric results of Buckley 
and Kovacs xs'n in preference to those of  other workers 23-25 for reasons given before 21. 

Let a superscript '0' denote equilibrium melting of a hypothetical large perfect crystal of infinite molecular weight polymer. 
Its melting point T ° would be 68.9°C for PEO. For T <  7 ;0 the bulk free enthalpy of fusion Afcan be approximated by: 

aI= ah°ar/r ° (28) 

where AT = T ° - T and M't is the enthalpy of fusion: ah 0 = 2.42 x 108 J m -3 for PEO. Equation (28) neglects the specific 
heat difference between crystal and melt, but will be correct to within c. 1% over the temperature range of interest here. 

The surface free energies Oe0 and aef used here are strictly defined differently from those given before ~6. The latter contain 
the free enthalpy excess of cilia and chain-folds over that of an equivalent mass of crystal. Assuming the free enthalpy of 
surface layers approximates that of the melt, and denoting these previous values by Oe0 and aef respectively, it is clear that: 

OeO = OeO - lcoAf  

J 
(29) 

The distinction only arises of course at finite supercooling. 
As pointed out before 2~, the absolute magnitude of aeO cannot be determined since it always appears in conjunction with 

the unknown constant C. Its value does, however, appear to increase from n = 0 to n ~> 1 because of hydrogen-bonding in the 
surfaces of extended-chain crystals; thus Buckley and Kovacs 16 found: 

-o kr° 
aeO + lnC= 2.31 x 10--2Jm -2 ( n = 0 )  

2ab 

~0 kTO 
Oe0 + lnC= 3.33 x 10-2 J m -2 (n~>l)  (30) 

2ab 

~.Of = 2.08 x 10 -2 J m -2 

These values were used in the present work, together with their estimated temperature coefficient 16 of -1.3%/deg C (compat- 
ible with the corresponding quantity for pE26). The chain-end surface free energy Oe0 enters the present theory only through 
ae0 (see equation (10)), which was therefore calculated from: 

, ( kr ) 2at, kr OeO = O'eO + - -  In C - lcoAf  + ~ in p 
2ab 

(31) 

The contour lengths of cilia and chain-folds were estimated 16 to be lcO = 9 l u, lf0 = 10 lu (lu = 0.0928 nm). These must be 
considered approximate but their precise values are unimportant here. Even assuming extreme values of lco = Ifo = 0 produced 
closely similar results. 

The crystal of PEO is monoclinic, and melt-grown crystals show chiefly {100} and {140} prism faces 3. Parameters a and 
b were therefore taken equal to ib I/2 = 0.652 nm and la*]/2 = 0.328 nm respectively, appropriate to growth on {100} faces 
(see Takahashi and Tadokoro 27 for the crystallography of PEO). 

It was not clear what value should be assigned to qJ (its apparently empirical nature is an unsatisfactory feature of the 
current theory). Inspection of equation (12), however, shows that JfilO -~ 0 as l ~ ,,o (as illustrated in Figure 4)  only whilst: 

A T  < 2aTO Abaah 0 (32) 

At higher supercoolings ]/rlO diverges as I-+ ~ creating the '6 l ca tastrophy'n. Concurrently, there is a change in shape of the 
curves GI(T ) and G2(T). Applying the inequality (32) to PEO gives the critical AT as 43 deg C when ~ = 1, yet experimental data 
in this region show no sign of a change in shape of the G(T) relation 2a. Clearly, if the concept of ~ has physical meaning for 
PEO its value must be less than. 1. In the present work a value of 0.5 was adopted, although checks made using ~ = 0 or 
q/= 1 gave no significant difference in the curves GI(T) and G2(T) for the range of temperatures considered. 

The remaining unknown is the lateral surface free energy a. The true value for {010} faces of PEO is not known. Hoffman 
and co-workers 26 have suggested that in general it may be estimated from: 

o = xAh(ab)  1/2 (33) 

where x is a constant, approximately 0.1 for chain molecules. In the case of PEO this yields o = 0.0112 J m-2.  
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Figure 6 Crystal growth-rate G 1 versus temperature T predicted by 
equation (14) using equation (12) for the four low MW fractions of 
Figure I, and using equation (27) for the limit of high MWwhen n 
is large, x is taken equal to 0.1 (a = 0.0112 J m-2). * indicates D~ 
= l t z m  
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As for Figure 6, but with x = 0.05 (a = 0.0056 J m -2) 

The summations of  equations (14) and (17) are conveniently carried out numerically. This is also the most realistic pro- 
cedure physically if l is stepped by lu, since each molecular stem must contain a whole number of  main-chain atoms. This 
method was therefore adopted here. The summations were obtained over the range L ~> l > lmin, stepping l downwards from 
L in increments of l u. 

Figure 6 shows the curves OfGl(T ) which result for the four molecular weights referred to inFigure 1. Each curve has 
been calculated as a family of branches, each branch corresponding to a different value o fn .  We assume that growth occurs 
at any given temperature with the value of n which gives the highest growth-rate at that temperature. In addition, the high 
MW limit corresponding to equation (27) is shown, assuming in this case that C = I. The predicted curves turned out to be 
highly sensitive to a, whose precise value is uncertain. To illustrate this, Figure 7 shows predictions obtained usingx = 0.05 
(o = 0.0056 J m-2).  

G2 and hence Dc* were also calculated. D c is not known. However, the fact that PEO crystal growth is found to be linear 
in time 4 to a resolution of the order of  1/am indicates that in practice D c < I/am. In Figures 6 and 7 a star is used to indicate 
the point (temperature T*) where the calculated Dc* = 1/am. At T > T*, Dc* > 1/am ; at T < T*, D c < 1/am. Hence at 
T > T*, r~gime 1 definitely obtains; whereas at T < T*, the possibility of  a transition to r6gime 2 cannot be ruled out. 

DISCUSSION 

The most striking feature of both Figures 6 and 7 is their qualitative resemblance to the experimental data of  Kovacs and co- 
workers given in Figure 1. The theory thus predicts chain-folding: a transition from extended-chain to folded-chain growth is 
predicted at sufficient supercooling, and folding is by adjacent re-entry. 

It is interesting to examine why this occurs, in relation to the theory. For supercoolings of more than a few degrees, the 
expression for j/rTO in equation (12) is dominated by the term exp (-2blo/kT). The maximum nucleation rate corresponds to 
I a little greater than lmi n (Figure 4). Figure 8 shows the variation o f / w i t h  n and Tpredicted forMW = 5970: its minimum 
lmin, maximum L and mean (1), defined by: 

(l> - X [ l i ( l ) / r l o ]  (34) 
x [ j ( l ) /nol 

where the summations are from I = lmi n to l = L. It is now clear that the reason for increasing chain-folding with increasing 
supercooling is that at a given temperature lmin decreases with increasing n and hence exp (-2blo/kT) is increased. The reason 
for lmi n decreasing with increasing n is the entropy of  localization term k In Cp which occurs in ae0 (equation (10)), and which 
has proportionately less effect on lmin as n increases (see equation (13)). (It is the same effect which causes extended-chain 
crystals of  PEO to melt at a lower temperature than folded-chain crystals of equal thickness 16. 

Some aspects of the calculations show quantitative agreement with experiment. Each branch of GI(T ) and G2(T ) is forced 
to approach zero at its corresponding melting-point measured by calorimetry, since the present theory is consistent with the 
analysis used previously for melting of PEO (substitate L for lmin in equation (13) and compare with equation (5) of  reference 
16) and we have chosen to use thermodynamic data measured in the previous study. In the case ofMW ~ oo and large n 
(equation (27)) the theory reduces to: 

G1 o¢ exp (-KT~ro/TAT) (35) 
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where: 

K = 4booef/kzSh 0 (36) 

at large supercooling. This equation is well-known to apply to a large number of high MIY polymers 26, including PEO 3. Even 
for finite M-W, the present theory predicts that G 1 will converge to this relationship at sufficient supercooling (lmi n ~ L) when 
n is large (see equation (12)), in agreement with experimental data for low MW PEO 3. Applying equations (3 5) and (36) to 
their data for PEO, Kovacs and Gonthier 3.* obtained K = 127 deg C, whereas the thermodynamic data used here (with x = 0.1) 
yield K = 91 deg C (neglecting variation of Oef with 7"). Exact agreement with experiment could easily be obtained here by adjust- 
ingx to 0.14. It is interesting to note, however, that remarkably good agreement could also be obtained (K = 129 deg C)with 
x = 0.1, by choosing b = l/2(la* 12 + Ib/212) 1/2 = 0.462 nm, appropriate to {120} growth-faces. {120} faces are not observed 
in the optical microscope on melt-grown PEO crystals 3, although they do appear on solution-grown crystals 29. This result 
therefore poses the question of  whether melt-grown crystals do in fact have serrated edges, with {120} growth-faces, on a 
finer scale than can be resolved with the optical microscope (see Kovacs et aL s). 

The present theory also sheds light on some qualitative features of the transitions in n. Firstly, the transitions as observed 
by Kovacs and co-workers 4 are very sharp, measurable to within 0.01°C, and the sharpness is greatest for transitions between 
low values of  n. Theoretical curves such as those of  Figure 8 provide an explanation. Consider the transition n = 0 to n = 1 
in Figure 8. In the region of this transition lmin(n = O) > L(n = 1). At temperatures below the transition, therefore, where 
once-folded-chain growth predominates, the substrate is too narrow to support any extended-chain nucleit and mixing of n is 
prohibited. At temperatures above the transition, GI(T)  for n = 1 decreases sharply as it approaches the corresponding melt- 
ing point, also making mixing of n unlikely. For these reasons the transition will be sharp. 

Secondly, it was noted by Kovacs and Gonthier 3 that at temperatures just above a transition, especially n = 0 to n = 1, 
crystals have no well-defined faces but appear rounded, implying very rough edges. This also can be explained from Figure 8. 
At temperatures just above the transitiononce-folded-chain nuclei can form on the extended-chain substrate, although they 
rapidly become rare as their melting-point is approached. When an occasional once-folded-chain layer does form, however, it 
can thicken immediately only to L(n = 1) which (as mentioned above) is too small to support extended-chain nuclei. It 
therefore acts as a defect, locally blocking growth of the crystal. Events such as this, even though comparatively rare, would 
disrupt the perimeter of  the crystal and could account for the rounded shapes observed. 

Closer comparison of Figures I and 6, however, reveals quantitative discrepancies. The range of G 1 covered in the tem- 
perature range considered is far too large. In particular, the vertical separation between adjacent branches of  the same curve is 
too large and the gradient of  GI(T)  is too great for low values of  n. The predicted transition temperatures are too high, in 
some cases by several degrees. 

Some contribution to these discrepancies certainly comes from two factors the theory cannot embrace. The curves in 
Figures 6 and 7 represent G1/t:dD c . To obtain G1/la it is necessary to multiply by the morphological factor Dc. This is likely to 
be temperature and n-dependent, increasing within each branch as the crystal edges become less rough. This would have the 
effect of  reducing the magnitude of the gradient of  GI(T) within each branch. In addition, fractionation near the melting- 
points Tm(n, p) will cause transition temperatures to be slightly lower than those predicted. 

** Although Kovacs and Gonthier used T m (n = 0, h) in place of 
TOm in applying equation (35), the effect of the discrepancy clearly 
disappears at large supercooling 

1" This is supported by the experimental fact that extended-chains 
cannot nucleate on a once-folded-chain substrate 4 
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The major discrepancy, however, is in the vertical separation of adjacent branches of a given curve, which cannot be 
explained along these lines. The situation can be improved by assuming a smaller value forx (and hence a) - see Figure 7 - 
but this of course sacrifices the agreement with experiment at high supercooling using x = 0.1. Furthermore the discrepancy 
is in the wrong sense to be explicable in terms of a transition to r6gime 2 at high supercoolings. 

The modifications (a) to (d) introduced above offer no help in this respect. (a) is not applicable as it merely justifies the 
formulation of G 1 used here. (b) and (d) were found to show only minor changes in the shape of the curves GI(T ), insufficient 
to explain the discrepancy. Model 1 of (c) produced essentially step-like growth-rate branches, due to a rapid decrease oflmin 
to unreasonably low values (of the order of lu) at the supercoolings considered, while model 2 did not even predict the transi- 
tion from extended-chain to folded-chain growth. 

The only remaining possibility, in terms of the present theory, is that o increases with increasing n, converging on the case 
x = 0.1 at large n. However, there is no precedent for such behaviour and the explanation is unsatisfying. It is more likely 
that the discrepancy reflects a previously unsuspected weakness in the accepted kinetic model of polymer crystallization. This 
possibility merits further investigation, but is beyond the scope of the present paper. 

During the course of this work, Point and Kovacs 3° have developed a new reduction rule for comparing polymer crystal 
growth-rate data with predictions of the kinetic theory. When applied to PEO, it too indicates a discrepancy between current 
theory and experimental results, in line with the present work 3°. 

CONCLUSIONS 

We have shown that to extend the kinetic theory of polymer crystallization to finite molecular weights requires considerably 
more detailed knowledge of the growth process than is sufficient for the high ~ limit. Only in the case of PEO is existing 
knowledge sufficient for a suitable theory to be constructed with any confidence. Even then several points of ambiguity 
remain, which have been explored here by considering modifications to the theory. 

The main conclusion of the present work is that when the kinetic theory, suitably modified for low MW PEO, is compared 
with detailed growth-rate data for this system, extensive qualitative agreement is obtained. In particular, the theory predicts 
increasing chain-folding with increasing supercooling or MW. It emerges as a consequence of assuming that when molecules 
attach to a growth nucleus they have no freedom of lengthwise positioning within it. This may apply to other polymers and 
hence be a general explanation for chain-folding. If the entropies of cilia and chain-folds are taken into account, one would 
expect molecules first to attach near one of their ends 1'19 and then to form tight folds 9 (see also the Appendix). This situation 
gives the lowest surface free energy, but also requires the molecules to have no choice of lengthwise positioning in the nucleus. 
Until similar results are obtained for other polymer systems, however, we cannot be certain that the effect is not special to 
PEO, perhaps being associated with hydroxyl end-group pairing. 

Minor points are that the theory can also rationalize the sharpness of the transitions in growth-rate curves, and the changes 
in crystal shape near the transitions. When taken to its limit of high MW and large n, the theory converges on the existing 
theory of Lauritzen and Hoffman 1°. In this case, reasonable quantitative agreement with experiment is obtained, suggesting 
either that cr is slightly larger than previously suspected or that crystals are serrated, with small-scale growth-faces of type {120} 

Detailed comparison between theory and experiment, however, reveals a sizable discrepancy in the relative levels of growth- 
rate in adjacent branches of the same curve. This can be empirically explained by allowing o to increase with increasing chain- 
folding, but alternatively a new weakness in the kinetic model of polymer crystallization may have been revealed. It seems 
that the discrepancy cannot be removed within the framework of existing theory. 

APPENDIX 

(a) Choice o f  sequence 
Consider the nucleation rate given by equation (3): 

j or0 
- -  = ( A 1 )  

r/0 [1 +71 +7172+3'17273 + . . . ]  

We indicated before that it is reasonable to assume there to be only two distinct 70: 3' and 7'. For low M-W PEO, provided MW 
is not too low, we have Oe0 > Oef, and hence from equation (11) a < or' and 7 < 7'- In equation (A 1), therefore, the upper 
limit on nucleation rate results when all occurrences of  7 appear as early as possible in the infinite series, giving for the case 
n = 2 :  

j t~0 

r~0 [1 +7  +72 +72V, +737, + . . .  ] (A2) 

whereas the lower limit results when occurrences ofT'  appear as early as possible, giving for n = 2: 

] o~ 0 

7/0 [1 + 7' + 7'3' + 7'72 + (7')272 + . . .  ] (A3) 
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Inspection shows that in both upper and lower limits the sequence must continue by each molecule folding fully n times 
before addition of the next. Equation (A2) corresponds to the sequence beginning as in Figure 5a, and equation (A3) as in 
Figure 5c. It is now clear that G 1 and G 2 calculated before apply to the sequence giving the highest nucleation rate. This is 
our justification for assuming that particular sequence. Modified forms for equation (8) and hence G 1 and G 2 are easily 
derived from equation (3), for the lower limit on//770 (g is unchanged because the repeating sequences of s o and "Yo are 
unchanged). 

(b ) Number o f  nucleation sites 

There are l/3l u monomer units in one molecular stem of the nucleus and L/3lu in the crystal substrate. If the only require- 
ment is that monomer units in nucleus and substrate are in register, there are ~ possible lengthwise positions of the nucleus, 
where ~ is the nearest integer below w, given by: 

~o = (L - l + l ) /31u 

Incorporating this into the theory simply involves multiplying e o by ~.  

(A4) 

(c) Degree o f  molecular localization 

Model i Suppose that the l/3l u monomer units of  each stem can be chosen randomly from the L/3l u units of the mole- 
cule it will comprise after thickening. This appears to correspond to the model of Beech et al. 8. In this case the first stem of 
the first molecule can be selected in (n + 1)~ different ways, first stems of subsequent molecules in ~ (n = 0) or 2 ~  (n > 0), 
and subsequent stems of first and subsequent molecules in ~ ways. The theory is therefore simply modified by multiplying 
s 0 by (n + 1 )~,  a '  by ~ (n = 0) or 2~, (n > 0), and a by ~ .  

Model 2 Suppose that the length of all folds as-formed is always lf0, (for justification see Sanchez and DiMarzio 9). Then 
at the ith stage of the addition of a molecule there is a string ofpi  consecutive monomer units, where: 

Pi = (il + 2lc0 + (i - 1)lfo)/31u (A5) 

to be chosen from the p units of the molecule. If this choice is made randomly, the nucleus will have an additional entropy: 

k ln(p  - Pi + 1) 

associated with this freedom. Assuming that this appears in forward transition rates only, it is possible to construct the terms 
required in G 1 as follows: 

a 0 =/~ exp 
2blo 2abo~o 

kT kT  
- -  +ln(P - p l  + 1) + ~ablAf] 

j 

ot i =/2 exp 

+ In (P - Pl + 1) + 
2aboeo ~ablAf ] 

O~n+ 1 =/.t exp k ~  kT  J 

(i--- 1,2 . . . .  n). (A6) 

with flu remaining unchanged. Although the periodicity o fa  o (and hence ")'v) is preserved, we now find that av depends on v 
within 1 ~< o ~< n, and so equations (8) and (20) do not apply. It is necessary to revert to equation (5) for ]/770 and equation 
(19) forg. In this way G 1 and G 2 may be determined. 

(d) Effect o f  I on OeO and Oef 
According to Sanchez and DiMarzio 9, the free enthalpies of cilia containing Cp c 'statistical segments' and chain-folds con- 

taining Cpf will be increased by: 

/X~c = kTkcln CPc 
(A7) 

J A(~f = kTkfln Cpf 

respectively, by the excluded volume of the crystal reducing the number of conformations available to them (Pc and pf  are the 
respective numbers of  monomer units involved). Constants k c and kf  can be estimated to be 0.5 and 1 respectively 9. We 
therefore need to estimate each pf  and Pc arising. To give this problem a unique solution we introduce another variant on our 
model of the growth process. Suppose PcO, PrO correspond to the situation in a mature crystal (thickness L) and are the 
minimum possible values of Pc, Pf. If  we adopt the criterion of always minimizing the contributions of A~ c and/xq~f, then we 
reach the conclusion that at any stage in the deposition of a molecule one cilium will be of minimum length PcO, all rn folds 
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will be of m i n i m u m  length Pf0, and so the other cilium will be of  length p - Pn - PcO - mpfo  where Pn is the number  of  
monomer  uni ts  (m + 1)l/3l u which have so far crystallized. This model  corresponds to that envisaged by Hoffman et aL 1. 
Under these circumstances, Aq~ c and Aq~f for the first cilium and all folds apply to PcO and P[O respectively, and are therefore 
included in the measured Oe0 and Oef from mature crystals. The necessary modif icat ion to the theory therefore is that  the free 
enthalpy at each stage in the growth sequence is greater by  an amount :  

k T k  c In [(p - Pn - PcO - mpfo)/PcO] 

than was allowed for previously, due to the additional length of the long cilium. Replacing in this expression numbers of 
monomer units by their physical lengths, i.e. p by X, Pn by (m + 1)l, PcO by Ico, and PfO by lfo, we find that the transition rates 
become: 

a 0 =/.t exp 

a U =/1 exp [ 

Oln+ 1 =/a exp 

2blo 2aboeo 

k T  k T  
k cln [ (X- l -  lcO)/lcO ] + kT J 

2aboef 

kT  
kc in {[X - (v + 1 ) / -  l c o -  vlfo]/[X - vl - l c o  - (v - 1)lf0]} + ~OablAf l ] (v = 1,2 . . . .  n) (A8) 

kT  J 

2aboeo 

k T  

~ a b l A f  ] 
k c l n [ ( ) t - l - l c O ) / l c O  ] + ~ - f  J 

As in the previous case, it is necessary to revert to equat ion (5) for ffrt0 and equat ion (19) f o r g  in order to evaluate G1 and G2. 
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